A Digitized Decoupled Dual-axis Micro Dynamically Tuned Gyroscope with Three Equilibrium Rings
نویسندگان
چکیده
A new digitized decoupled dual-axis micro dynamically tuned gyroscope with three equilibrium rings (TMDTG) is proposed which can eliminate the constant torque disturbance (CTD) caused by the double rotation frequency of a driving shaft with a micro dynamically tuned gyroscope with one equilibrium ring (MDTG). A mechanical and kinematic model of the TMDTG is theoretically analyzed and the structure parameters are optimized in ANSYS to demonstrate reliability. By adjusting the thickness of each equilibrium ring, the CTD can be eliminated. The digitized model of the TMDTG system is then simulated and examined using MATLAB. Finally, a digitized prototype based on FPGA is created. The gyroscope can be dynamically tuned by adjusting feedback voltage. Experimental results show the TMDTG has good performance with a scale factor of 283 LSB//s in X-axis and 220 LSB//s in Y-axis, respectively. The scale factor non-linearity is 0.09% in X-axis and 0.13% in Y-axis. Results from analytical models, simulations, and experiments demonstrate the feasibility of the proposed TMDTG.
منابع مشابه
A Micro Dynamically Tuned Gyroscope with Adjustable Static Capacitance
This paper presents a novel micro dynamically tuned gyroscope (MDTG) with adjustable static capacitance. First, the principle of MDTG is theoretically analyzed. Next, some simulations under the optimized structure parameters are given as a reference for the mask design of the rotor wafer and electrode plates. As two key components, the process flows of the rotor wafer and electrode plates are d...
متن کاملGyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods
In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...
متن کاملMechanical Coupling Error Suppression Technology for an Improved Decoupled Dual-Mass Micro-Gyroscope
This paper presents technology for the suppression of the mechanical coupling errors for an improved decoupled dual-mass micro-gyroscope (DDMG). The improved micro-gyroscope structure decreases the moment arm of the drive decoupled torque, which benefits the suppression of the non-ideal decoupled error. Quadrature correction electrodes are added to eliminate the residual quadrature error. The s...
متن کاملResearch of Processing Errors on Modal Frequency of a Dual-mass Decoupled Silicon Micro-gyroscope
In this paper, the architecture, processing errors analysis and optimization method of a dual-mass silicon micro-gyroscope are presented. The dual-mass silicon micro-gyroscope consists of two identical single mass gyroscopes and a lever mechanism. Driving decoupling springs and sensing decoupling springs are key components to achieve motion decoupling. The processing error analysis indicates th...
متن کاملDual-band, Dynamically Tunable Plasmonic Metamaterial Absorbers Based on Graphene for Terahertz Frequencies
In this paper, a compact plasmonic metamaterial absorber for terahertz frequencies is proposed and simulated. The absorber is based on metamaterial graphene structures, and benefits from dynamically controllable properties of graphene. Through patterning graphene layers, plasmonic resonances are tailored to provide a dual band as well as an improved bandwidth absorption. Unit cell of the design...
متن کامل